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1 DESIGN DETAILS

1.1 Posterior P (Sj |A)

We have the following observations:

• By the principle of maximal entropy [1] (which states
that, subject to known constraints, or testable informa-
tion, the probability assignment that best represents
our state of knowledge is the one which maximizes
the entropy, as defined by Shannon [2]), before ob-
taining any assessment, a node i, which holds no
presumption on another node j’s suspiciousness, should
assign a uniform distribution to the prior P (Sj),
which is:

P (Sj) = 1, (1)

since, by definition, Sj ∈ [0, 1]. Any other assign-
ment of P (Sj) reflects prejudice that i holds against
j, which is not warranted by our assumption on the
background knowledge B.

• The independence between pairs of assessments
implies the equivalence of batch and sequential com-
putation for P (Sj |A). If we apply the assessment
sequentially by using the posterior of the previous
round as the prior of this round, we have:

P (Sj |A) = P (Sj |a1, . . . , aA)

∝ P (aD|Sj , a1, . . . , aD−1)

× P (Sj |a1, . . . , aA−1)

= P (aD|Sj)× P (Sj|a1, . . . , aA−1)

. . .

∝ P (Sj)
D
∏

k=1

P (ak|Sj).

(2)
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By the definition of suspiciousness Sj and the inde-
pendence among assessments, we have:

P (ak|Sj) =

{

Sj for ak = 1
1− Sj for ak = 0

. (3)

By Equations 1, 2, and 3, we have:

P (Sj |A) ∝ SsA
j (1− Sj)

A−sA ,

in which sA is the number of suspicious assessments in
A (i.e., the assessments equal to 1), and A = |A| is the
number of assessments collected so far.

1.2 Posterior Maximizer

We can calculate the Sj ∈ [0, 1] which maximizes
P (Sj |A). Let a = sA and b = A − sA. If a = 0 and
b 6= 0, Sj = 0 is the maximizer; conversely, if a 6= 0 and
b = 0, Sj = 1 is the maximizer. If both a and b are both
non-zero, let C be the normalization constant (which is
a constant for Sj), we have:

dP (Sj |A)

dSj

=
d
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(

CSa
j

b
∑
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(

b

k

)

(−Sj)
k
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= CaSa−1
j

b
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(

b

k

)

(−Sj)
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− CbSa
j

b−1
∑

k=0

(

b− 1

k

)

(−Sj)
k

= CSa−1
j (1− Sj)

b−1 (a(1− Sj)− bSj) .

The unique S ∈ (0, 1) which makes d
dSj

P (Sj |A) = 0 is

the Sj which satisfies a(1− Sj)− bSj = 0, i.e., Sj =
a

a+b
.

Moreover, it maximizes P (Sj |A), even when either a or
b (but not both) is zero. Therefore, we have:

argmax
Sj∈[0,1],A6=∅

P (Sj |A) =
a

a+ b
=

sA

A
.

1.3 Monotonicity of Pg(A) and Pe(A) on sA

We have Pg(A) = 1−Pe(A). Thus, we only need to prove
the monotonicity of any one of them; the other follows
naturally.

Here, we prove that Pg(A) is a monotonically decreas-
ing function on sA.
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Let a = sA and b = A− sA; we only need to prove:

(

∫ 1

0

Sa
j (1− Sj)

b+1 dSj)
−1

∫ Le
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b+1 dSj

≥ (

∫ 1

0

Sa+1
j (1− Sj)

b dSj)
−1

∫ Le

0

Sa+1
j (1− Sj)

b dSj ,

or, equivalently:
∫ 1

0

Sa+1
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b dSj
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≥
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0

Sa+1
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b dSj .

Subtract
∫ Le

0
Sa+1
j (1 − Sj)

b dSj

∫ Le

0
Sa
j (1 − Sj)

b+1 dSj

from both sides, we get:
∫ 1

Le

Sa+1
j (1− Sj)

b dSj

∫ Le

0

Sa
j (1− Sj)

b+1 dSj

for the left side and:
∫ Le

0

Sa+1
j (1− Sj)

b dSj

∫ 1

Le

Sa
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b+1 dSj

for the right side.
Finally, we have:
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b+1 dSj = right.

Thus, we have proven that “Pg(A) is a monotonically
decreasing function on sA” and “Pe(A) is a monotoni-
cally increasing function on sA”.

2 HOW TO CHOOSE THE LOOKAHEAD λ

In this section, we discuss how to adapt the look-ahead
λ to individual nodes’ intrinsic risk inclinations against
the malware.
λ must be large enough so that the decision process

will not terminate prematurely. For example, after the
first suspicious-action assessment against J , depending
on Le, the evidence might become unfavorable toward
j, and i will consider whether to cut j off. If λ happens
to be too small, depending on Le, the cut-off decision
may be λ-robust at this very point (i.e., after the first
assessment), and i will cut j off by the decision rule.
Thus, λ should be properly chosen to ensure the decision
process will bootstrap.

However, the look-ahead λ is related to the potential
risk of being infected if the look-ahead has been carried
out. Suppose that i’s infection risk (against j) is R(n)
where n is the number of encounters between i and
j; since direct contact is the only propagation channel

of the proximity malware, R(n) and n are positively
correlated: more encounters mean a higher risk of being
infected. One reasonable instantiation of R(n) is R(n) =
1 − (1 − p)n, where p is the (fixed) infection probability
in a single encounter.

Suppose that i’s cost of cutting j off (and hence losing
j’s service) is Ci(j). To be comparable with the instanti-
ation R(n) = 1− (1−p)n, let 0 < Ci(j) < 1. Ci(j) reflects
the value of j’s service to i. One possible instantiation
of Ci(j) is j’s social significance as perceived by i.
For example, i can collect past communication/forward-
ing records or even initiate (opportunistic) local social
community detection and use techniques such as ego-
betweenness [3] to estimate j’s social significance to i.
The social cost Ci(j) can be estimated once and kept
fixed or can otherwise be updated regularly throughout
the decision process.

If the evidence is unfavorable toward j, the look-
ahead λ can be chosen by λ = max{n|R(n) ≤ Ci(j)} =
max{n|1− (1−p)n ≤ Ci(j)}: i is willing to give j chance
(by looking λ steps ahead and hence not cutting j off
immediately) as long as the infection risk (positively
correlated with λ) is less than the cost of losing j’s
service (if j is a good neighbor). Depending on the
relation between the infection risk R(n) and the social
cost Ci(j), λ can be either static or dynamic across
multiple encounters. To put it another way, a large λ is
chosen as long as the (potential) benefit of maintaining
connection with j justifies the (infection) risk.
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